博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python学习笔记之函数式编程
阅读量:5276 次
发布时间:2019-06-14

本文共 8268 字,大约阅读时间需要 27 分钟。

python中的高阶函数

高阶函数就是 变量名指向函数,下面代码中的变量abs其实是一个函数,返回数字的绝对值,如abs(-10) 返回 10

def add(x,y,f):    return f(x) +f(y)add(-5,9,abs)#14

python把函数作为参数

利用add(x,y,f)函数计算:

import mathdef add(x, y, f):    return f(x) + f(y)print add(25, 9, math.sqrt)#5,3

python中map()函数

map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。

例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9]

如果希望把list的每个元素都作平方,就可以用map()函数:

因此,我们只需要传入函数f(x)=x*x,就可以利用map()函数完成这个计算:

def f(x):    return x*xprint map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])

输出结果:

[1, 4, 9, 10, 25, 36, 49, 64, 81]

注意:map()函数不改变原有的 list,而是返回一个新的 list。

例如:假设用户输入的英文名字不规范,没有按照首字母大写,后续字母小写的规则,请利用map()函数,把一个list(包含若干不规范的英文名字)变成一个包含规范英文名字的list:

#小写转大写def format_name(s):    return s.title()print map(format_name, ['adam', 'LISA', 'barT'])#['Adam', 'Lisa', 'Bart']

python中reduce()函数

from functools import reduce # Python3.X中需要引入包

reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。

例如,编写一个f函数,接收x和y,返回x和y的和:

def f(x, y):    return x + y

调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:

先计算头两个元素:f(1, 3),结果为4;再把结果和第3个元素计算:f(4, 5),结果为9;再把结果和第4个元素计算:f(9, 7),结果为16;再把结果和第5个元素计算:f(16, 9),结果为25;由于没有更多的元素了,计算结束,返回结果25。

上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。

reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,计算:

reduce(f, [1, 3, 5, 7, 9], 100)

结果将变为125,因为第一轮计算是:

计算初始值和第一个元素:f(100, 1),结果为101
例如:
Python内置了求和函数sum(),但没有求积的函数,请利用recude()来求积:
输入:[2, 4, 5, 7, 12]

输出:2*4*5*7*12的结果

def prod(x, y):    return x*yprint reduce(prod, [2, 4, 5, 7, 12])

python中filter()函数

filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。

例如,要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数,首先,要编写一个判断奇数的函数:

def is_odd(x):    return x % 2 == 1

然后,利用filter()过滤掉偶数:

filter(is_odd, [1, 4, 6, 7, 9, 12, 17])
py3 中还要加list,.....print(list( filter(is_sqr, range(1, 101)))

 

结果:[1, 7, 9, 17]

利用filter(),可以完成很多有用的功能,例如,删除 None 或者空字符串:

def is_not_empty(s):    return s and len(s.strip()) > 0filter(is_not_empty, ['test', None, '', 'str', '  ', 'END'])#['test', 'str', 'END']#Python 3.X 中print(list(filter(is_not_empty, ['test', None, '', 'str', '  ', 'END'])))

 

注意: s.strip(rm) 删除 s 字符串中开头、结尾处的 rm 序列的字符。

当rm为空时,默认删除空白符(包括'\n', '\r', '\t', ' '),如下:

a = '     123'a.strip()#结果: '123'a='\t\t123\r\n'a.strip()#结果:'123'

请利用filter()过滤出1~100中平方根是整数的数,即结果应该是:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

import mathdef is_sqr(x):    r = int(math.sqrt(x))    return r*r==xprint filter(is_sqr, range(1, 101)) #[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
#python 3.X  print(list(filter(is_sqr, range(1, 101)))) #[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

 

python中自定义排序函数

Python内置的 sorted()函数可对list进行排序:

>>>sorted([36, 5, 12, 9, 21])#[5, 9, 12, 21, 36]

但 sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。

因此,如果我们要实现倒序排序,只需要编写一个reversed_cmp函数:

def reversed_cmp(x, y):    if x > y:        return -1    if x < y:        return 1    return 0

这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序:

>>> sorted([36, 5, 12, 9, 21], reversed_cmp)#[36, 21, 12, 9, 5]

sorted()也可以对字符串进行排序,字符串默认按照ASCII大小来比较:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'])['Credit', 'Zoo', 'about', 'bob']

'Zoo'排在'about'之前是因为'Z'的ASCII码比'a'小。

例如:

对字符串排序时,有时候忽略大小写排序更符合习惯。请利用sorted()高阶函数,实现忽略大小写排序的算法。

输入:['bob', 'about', 'Zoo', 'Credit']

输出:['about', 'bob', 'Credit', 'Zoo']

def cmp_ignore_case(s1, s2):    u1 = s1.upper()    u2 = s2.upper()    if u1 > u2:        return 1    if u1 < u2:        return -1    return 0print sorted(['bob', 'about', 'Zoo', 'Credit'], cmp_ignore_case)
#python 3.X 中自定义排序函数     sorted() a = ['bob', 'about', 'Zoo', 'Credit'] print(sorted(a, key=str.lower)) l = [36, 5, 12, 9, 21] print(sorted(l, key=lambda x:(x<0,abs(x))))

 

python中返回函数

Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数!

例如,定义一个函数 f(),我们让它返回一个函数 g,可以这样写:

def f():    print 'call f()...'    # 定义函数g:    def g():        print 'call g()...'    # 返回函数g:    return g

 

仔细观察上面的函数定义,我们在函数 f 内部又定义了一个函数 g。由于函数 g 也是一个对象,函数名 g 就是指向函数 g 的变量,所以,最外层函数 f 可以返回变量 g,也就是函数 g 本身。

调用函数 f,我们会得到 f 返回的一个函数:

>>> x = f()   # 调用f()call f()...>>> x   # 变量x是f()返回的函数:
>>> x() # x指向函数,因此可以调用call g()... # 调用x()就是执行g()函数定义的代码

请注意区分返回函数和返回值:

def myabs():    return abs   # 返回函数def myabs2(x):    return abs(x)   # 返回函数调用的结果,返回值是一个数值

返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:

def calc_sum(lst):    return sum(lst)

调用calc_sum()函数时,将立刻计算并得到结果:

>>> calc_sum([1, 2, 3, 4])10

 

但是,如果返回一个函数,就可以“延迟计算”:

def calc_sum(lst):    def lazy_sum():        return sum(lst)    return lazy_sum

 

# 调用calc_sum()并没有计算出结果,而是返回函数:

>>> f = calc_sum([1, 2, 3, 4])>>> f

 

# 对返回的函数进行调用时,才计算出结果:

>>> f()10

 

由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。

例如:

请编写一个函数calc_prod(lst),它接收一个list,返回一个函数,返回函数可以计算参数的乘积。

def calc_prod(lst):    def lazy_prod():        def f(x,y):            return x*y        return reduce(f, lst, 1)    return lazy_prodf = calc_prod([1, 2, 3, 4])print f()

python中闭包

在函数内部定义的函数和外部定义的函数是一样的,只是他们无法被外部访问:

def g():    print 'g()...'def f():    print 'f()...'    return g

将 g 的定义移入函数 f 内部,防止其他代码调用 g:

def f():    print 'f()...'    def g():        print 'g()...'    return g

但是,考察上一小节定义的 calc_sum 函数:

def calc_sum(lst):    def lazy_sum():        return sum(lst)    return lazy_sum

注意: 发现没法把 lazy_sum 移到 calc_sum 的外部,因为它引用了 calc_sum 的参数 lst。

像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。

闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。

例如:
返回闭包不能引用循环变量,请改写count()函数,让它正确返回能计算1x1、2x2、3x3的函数。

def count():    fs = []    for i in range(1, 4):        def f(j):            def g():                return j*j            return g        r = f(i)        fs.append(r)    return fsf1, f2, f3 = count()print f1(), f2(), f3()

python中匿名函数  lambda函数

高阶函数可以接收函数做参数,有些时候,我们不需要显式地定义函数,直接传入匿名函数更方便。

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算 f(x)=x时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

#Function 正常使用的表达方法def func(n):    return n + 1print(func(2))#Lambda 表达方法f = lambda x:x+1print(f)print(f(2))>>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])[1, 4, 9, 16, 25, 36, 49, 64, 81]#Python 3.X中是:print(list(map(lambda x: x * x, [1,2,3,4,5,6,7,8,9])))#[1, 4, 9, 16, 25, 36, 49, 64, 81]

 

 

当然Lambda表达式也有以下的使用情况:

#多参数情况print("多参数情况")multi = lambda x,y,z: x+y+zprint(multi(1,2,3))#和非匿名函数一块工作print("和非匿名函数一块工作")def namedFunc(n):    return lambda x:n+xprint(namedFunc(2)) #会打印出function,相当于 lambda x: 2+xprint(namedFunc(2)(3)) #会打印出5f = namedFunc(2)print(f(3)) #等同于namedFunc(2)(3)

 

 

通过对比可以看出,匿名函数 lambda x: x * x 实际上就是:

def f(x):    return x * x

关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果

例如:

print filter(lambda s: s and len(s.strip())>0, ['test', None, '', 'str', '  ', 'END'])#Python3.x 中是这样的:print(list(filter(lambda s: s and len(s.strip())>0, ['test', None, '', 'str', '  ', 'END'])))

对于lambda表达式在Python程序中的一些小建议

1. 对于简单的逻辑处理,可以放心使用Lambda表达式,这样比较简洁

2. 对于复杂的逻辑处理,尽量避免使用Lambda表达式,易读性差,而且容易出错(大牛除外)

python 中 decortor 装饰器

python中编写无参数decorator

Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数。

使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写f = decorate(f) 这样的代码。

考察一个@log的定义:

def log(f):    def fn(x):        print 'call ' + f.__name__ + '()...'        return f(x)    return fn

 

对于阶乘函数,@log工作得很好:

@logdef factorial(n):    return reduce(lambda x,y: x*y, range(1, n+1))print factorial(10)

 

结果:

call factorial()...3628800

 

但是,对于参数不是一个的函数,调用将报错:

@logdef add(x, y):    return x + yprint add(1, 2)#结果:Traceback (most recent call last):  File "test.py", line 15, in 
print add(1,2)TypeError: fn() takes exactly 1 argument (2 given)

 

因为 add() 函数需要传入两个参数,但是 @log 写死了只含一个参数的返回函数。

要让 @log 自适应任何参数定义的函数,可以利用Python的 *args 和 **kw,保证任意个数的参数总是能正常调用:

def log(f):    def fn(*args, **kw):        print 'call ' + f.__name__ + '()...'        return f(*args, **kw)    return fn

 

现在,对于任意函数,@log 都能正常工作。

 例子:

请编写一个@performance,它可以打印出函数调用的时间。

import timedef performance(f):    def fn(*args, **kw):        t1 = time.time()        r = f(*args, **kw)        t2 = time.time()        print 'call %s() in %fs' % (f.__name__, (t2 - t1))        return r    return fn@performancedef factorial(n):    return reduce(lambda x,y: x*y, range(1, n+1))print factorial(10)

python中完善decorator

 

转载于:https://www.cnblogs.com/PeterZhang1520389703/p/7724756.html

你可能感兴趣的文章
第六章 字节码执行方式--解释执行和JIT
查看>>
实现绘制图形的ToolBar
查看>>
字符串方法title()、istitle()
查看>>
yield语句
查看>>
查看linux系统中占用cpu最高的语句
查看>>
[洛谷P1738]洛谷的文件夹
查看>>
ubuntu server设置时区和更新时间
查看>>
设置dataGridView单元格颜色、字体、ToolTip、字体颜色
查看>>
【京东咚咚架构演进】-- 好文收藏
查看>>
【HTML】网页中如何让DIV在网页滚动到特定位置时出现
查看>>
文件序列化
查看>>
fabricjs 高级篇(自定义类型)
查看>>
jQuery之end()和pushStack()
查看>>
Bootstrap--响应式导航条布局
查看>>
Learning Python 009 dict(字典)和 set
查看>>
JavaScript中随着鼠标拖拽而移动的块
查看>>
HDU 1021 一道水题
查看>>
The operation couldn’t be completed. (LaunchServicesError error 0.)
查看>>
php每天一题:strlen()与mb_strlen()的作用分别是什么
查看>>
工作中收集JSCRIPT代码之(下拉框篇)
查看>>